
A
chip designer uses a tool
on his workstation to
model a microprocessor’s
logics. The tool helps him
by using prebuilt compo-
nents and patterns and

verifying the design’s soundness, and as-
sists in finding a good routing and chip
layout. The designer tests the model and
then sends it straight to the wafer fabrica-
tion unit. There, based on the model, mask
creation, phase shifting, etching, and so on
happen completely automatically. Had the
chip designer been a software engineer,
some people would have expected him to
print the model or even throw it away, go
down and talk to the guys in the wafer
fabrication unit about how the chip should
look, and so forth. Of course I’m oversim-
plifying, but you get the picture.

Software engineering has gone through
the same dark ages as chip design and
other areas of manufacturing and now has
a good chance to make the transition to
the same maturity level. Assembly lan-
guage’s complexity and lack of expressive-
ness and portability taught us to use third-
generation languages (3GLs), which—

together with the corresponding compil-
ers—we’ve come to take for granted as
powerful and indispensable software de-
velopment tools. They help us handle reg-
ister assignments, jump prediction, mem-
ory management code, and much more.
And I’m not even talking about porting
across operating systems.

The reason we’re on the brink of moving
toward the Object Management Group’s
Model Driven Architecture (MDA) is that
the technologies we use have grown signifi-
cantly more complex over the last few
years. Moreover, technology changes faster
than the businesses we’re trying to support
with this technology. Why would I bother
to implement a bidirectionally navigable as-
sociation between two Enterprise JavaBean
components if I can just draw an associa-
tion between two classifiers in a Unified
Modeling Language diagram? Moreover,
why would I go to the trouble of creating all
the technical detail involved in implement-
ing an association manually if the result of
doing so is not portable? It turns out that
you can employ 3GLs to specify these plat-

point

MDA is the
next logical
evolutionary

step to
complement 3GLs
in the business

of software
engineering.

7 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

Model Driven
Architecture Is Ready

for Prime Time
Axel Uhl, Interactive Objects Software

Continued on page 72

I
’m not all that sure about the di-
rection that model-driven devel-
opment appears to be taking.
Don’t get me wrong—I’m a firm
believer in modeling. It’s just that
I think that there’s a lot more to

development than this. Here’s my point:
We need to distinguish between generative
MDD and Agile MDD. Generative MDD,
epitomized by the Object Management
Group’s Model Driven Architecture, is
based on the idea that people will use very
sophisticated modeling tools to create very
sophisticated models that they can auto-
matically “transform” with those tools to
reflect the realities of various deployment
platforms. Great theory—as was the idea
that the world is flat. In my opinion, gen-
erative MDD is a lost cause for the current
generation of developers. Agile MDD will
be a struggle to pull off, but at least it has
a chance of succeeding.

I believe that modeling is a way to think
issues through before you code because it
lets you think at a higher abstraction level.
You can also do this by writing a test be-
fore you write functional code, along the
lines of test-driven development. But this

isn’t a TDD discussion, so I’ll say nothing
more.

I’m also a firm believer in something that
I call Agile Model Driven Development
(AMDD). An agile model is just barely
good enough—it meets its goals and no
more. Because “just barely good enough” is
relative, you can consider a sketch, a Uni-
fied Modeling Language statechart, or a de-
tailed physical database model as an agile
model in the right situations. Following an
AMDD approach, I typically use very sim-
ple tools, such as whiteboards and paper,
when I work with users to explore and an-
alyze their requirements. Simple tools are
easy to work with, inclusive (my stakehold-
ers can be actively involved with modeling),
and flexible, and they’re not constraining.
They’re exactly what I need when I’m ex-
ploring the problem domain and identifying
my system architecture.

When it comes to detailed AMDD design
modeling, I’ll often use sophisticated model-
ing tools such as Together ControlCenter
(www.borland.com/together/controlcenter)
or Poseidon (www.gentleware.com) for ob-

Has it been 10
years already?

The “uber-
modeling tool”
vision rears its
ugly head yet

again.

counterpoint

S e p t e m b e r / O c t o b e r 2 0 0 3 I E E E S O F T W A R E 7 1

Agile Model Driven
Development Is Good
Enough

Scott W. Ambler, Ronin International

Continued on page 72

counterpointcontinued from page 71

7 2 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

forms’ use as well as you might use as-
sembly language to create a Web-based
customer relationship management sys-
tem; they’re simply not the most appro-
priate way to express the system’s struc-
ture and behavior.

I’m not saying that we have to express
each and every detail of our system spec-
ification in one or more UML models.
But we’re much better off than we are
with 3GLs alone: models don’t have to
become platform dependent. A reason-
able MDA tool lets you add system spec-
ifications at various abstraction levels
and keeps them synchronized. The con-
cept of marks (mapping-specific annota-
tions that you can attach to model ele-
ments) helps keep the models themselves
free from unnecessary platform specifici-
ties. With this kind of technology, we can
provide each bit of system specification
in the formalism that’s most appropriate
for this purpose. Examples of such tools
include Interactive Object’s ArcStyler
(www.arcstyler.com) and Compuware’s
OptimalJ (www.optimalj.com).

MDA is built on a solid founda-
tion, including the Meta-Object Facil-
ity and UML, which are both well-

adopted, ever-maturing formalisms for
specifying metamodels and models. The
agreement to use UML for most model-
ing activities takes us a lot farther than
we were in the days when we could
only agree to use ASCII for the pro-
gramming languages. Today, you can
automatically create UML profiles for a
metamodel given in MOF. Several pow-
erful technology- and domain-specific
metamodels and corresponding UML
profiles have already been standard-
ized—for example, Enterprise Distrib-
uted Object Computing or Java Speci-
fication Request 26 for the Java 2
Platform, Enterprise Edition. The better
MDA tools can let users extend and
customize existing model transforma-
tion rules. Also, standards to specify
portable model transformations are un-
derway (see the work on MOF 2.0 for
queries, views, and transformations).

Many projects have successfully de-
ployed MDA using appropriate tool sup-
port (see www.omg.org/mda/products_
success.htm). The development of repos-
itories and tools using UML is itself an
excellent example of applied MDA: You
can download the models from the

OMG Web server and use them right
away as input to an MDA model trans-
formation. The UML metamodel’s
size alone caters to the substantial sav-
ings that an MDA approach yields in this
scenario.

Software engineers are seeing a
strong pull toward model-centric de-
velopment. University classes already
teach undergraduate students UML,
and bookshelves are beginning to fill
with MDA material. MDA is here to
stay—just as 3GLs were (and still
are) some decades ago. We are now
taking the next evolutionary step.
From all I’ve seen, I’m convinced that
MDA is the way to go. It’s ready for
prime time.

Axel Uhl is a software architect in the team developing
the architectural IDE ArcStyler at Interactive Objects Software
and is pursuing a PhD in software architectures for scalable
Internet search at Aachen University. He is actively contribut-
ing to the OMG's MDA standardization efforts. Contact him at
axel.uhl@io-software.com.

point continued from page 70

ject modeling and ERwin (www3.ca.
com/Solutions/Product.asp?ID=260)
for data modeling. Tools such as these
make sense when you’re trying to
generate code. AMDD implores you
to work with the simplest (not just
simple) tools and depending on your
goal, sometimes the simplest tool is
quite sophisticated. Many developers,
however, choose not to work with
tools such as this and prefer simply to
work with integrated development

environments such as Eclipse (www.
eclipse.org) or Visual Studio (http://
msdn.microsoft.com/vstudio). Every-
one doesn’t need, or want, sophisti-
cated modeling tools. Notably with
AMDD, programmers write the code
progressively in step with the models—
AMDD promotes an evolutionary ap-
proach, in which implementation oc-
curs iteratively and incrementally.

To me, generative MDD is based on
an incredibly wobbly foundation.

First, we don’t yet have a standard
modeling language that suffices for
real-world needs, making it difficult
for developers to work together effec-
tively. Every system that I’ve ever built
has both a user interface on the front
end and a database on the back end,
yet UML still doesn’t address these
fundamental issues. Yes, the common
rhetoric says all you need to do is ap-
ply a few stereotypes to existing UML
diagrams, but as my work on a UML

S e p t e m b e r / O c t o b e r 2 0 0 3 I E E E S O F T W A R E 7 3

data modeling profile shows (see www.agiledata.org/essays/
umlDataModelingProfile.html), there’s a lot more to it than
this, and I’ve just scratched the surface (I’m also eager to re-
ceive feedback on this work).

Second, people simply don’t have the modeling skills. It’s
hard enough to teach people how to create a sequence dia-
gram or statechart on a whiteboard, let alone with a com-
plicated modeling tool. We need to learn to crawl before we
walk—or run. I’ll be impressed if most developers start
sketching in this in the coming decade.

Third, the tools aren’t there. There are some interesting
tools such as Bridgepoint (www.projtech.com/prods) and
Codagen (www.codagen.com), but they’re not in wide use.
The OMG appears to promote the idea that you can cobble
a toolset together via the XML Metadata Interchange stan-
dard, but I question that too. For this vision to work, tool
vendors would need to actually support the XMI specifica-
tion as defined. Yet, past experiences with CORBA ORB (Ob-
ject Request Broker) interoperability show that vendors will

often claim support for a standard but then implement their
own version of it for competitive reasons. Interestingly
enough, numerous modeling tool vendors support XMI, yet
I can’t find a pair of tools that let me model in both and ex-
port back and forth without loss of information. Go figure.

The bottom line is that AMDD is a stretch for most de-
velopers and, at best, the executable MDD vision is viable in
only a few situations. The MDD community should focus
on what’s practical and not on ivory tower theories.

Scott W. Ambler is a senior consultant with Ronin International (www.ronin-intl.com). He
is thought leader of the Agile Modeling methodology (www.agilemodeling.com), a contributing edi-
tor with Software Development (www.sdmagazine.com), and a member of Flashline’s (www.
flashline.com) Software Development Productivity Consortium. His latest book is Agile Database
Techniques (John Wiley & Sons, 2004). Contact him at scott.ambler@ronin-intl.com.

Scott and I agree that modeling generally is good. How-
ever, I disagree that generative MDD, as Scott calls it, or
Model Driven Architecture is a lost cause. Several industrial
software development projects have already proven it. Take,
for example, Deutsche Bank Bauspar or the Austrian Na-
tional Railroads, reporting total savings around 40 percent
for their first MDA project.

With MDA, you can integrate any modeling language
that you use with your domain experts by using the Meta-
Object Facility (MOF), thus benefitting from automated model
verification and transformation.

MDA does not prevent evolutionary approaches with an
iterative and incremental development process. We use the
MDA tool ArcStyler to develop ArcStyler itself in a team and
proceed iteratively and incrementally without problems, par-
ticularly without MDA-related ones.

All MDA modeling languages are formally specified in
the same metamodeling language MOF: a rock-solid founda-
tion. UML profiles used for model representation are also
standardized, as is the specification language for model
transformations.

UML was intentionally kept concise, without domain speci-
fics. Instead, UML offers lightweight extensibility, permitting
the creation of UML profiles for metamodels formally speci-
fied in the MOF. You can even create profiles automatically
using MDA.

I think that AMDD incurs the cost of modeling but stops
before reaping the true benefits. I will always try to gain
value from my models using MDA, as Scott does for the
tests. I’ve seen MDA pay off so many times, in numerous
real-world projects. So, I remain firmly convinced that it
works.

Axel Responds
Sigh. The good news is that Axel and I didn't agree. That

would have been boring, and in many ways it's because I’m
focused on the present and Axel is focused on the future. The
reason I’m not very excited about MDA is because I've heard
similar visions in the past, visions that all failed miserably:

■ Integrated Computer-Aided Software Engineering. I-CASE

emerged in the 1980s and failed because the tools couldn't
keep up with changing technology. Few developers had
the requisite modeling skills or the desire to learn them,
and although the tools generated 80 to 90 percent of the
code, the extra 10 percent typically required 90 percent
of the effort.

■ Application Development Cycle. Not only wasn't the mar-
ket ready for AD/Cycle, it saw through IBM's transparent
veil and realized that its real goal for AD/Cycle was to sell
products and services instead of the stated altruistic aims.

■ Common Object Request Broker Architecture. Even though
most CORBA vendors complied with the specification, at
least partly, getting their "standard" ORBs (Object Request
Brokers) to work together in practice was very difficult. Ap-
parently, the vendors found significant marketing benefit in
saying their tools were "CORBA compliant" yet little benefit
in making it easy to work with their competitors’ products.

I'm jaded when it comes to the MDA because I just don't
see how it doesn't suffer from the same problems that sank
I-CASE, AD/Cycle, and CORBA. Don't get me wrong, I would
be very happy to see the MDA vision succeed because I’m
clearly pro-modeling and, like most developers, like to work
with good tools that increase my productivity. I'm just not go-
ing to hold my breath waiting.

Scott Responds

